6,205 research outputs found

    Blind insight: metacognitive discrimination despite chance task performance

    Get PDF
    Blindsight and other examples of unconscious knowledge and perception demonstrate dissociations between judgment accuracy and metacognition: Studies reveal that participants’ judgment accuracy can be above chance while their confidence ratings fail to discriminate right from wrong answers. Here, we demonstrated the opposite dissociation: a reliable relationship between confidence and judgment accuracy (demonstrating metacognition) despite judgment accuracy being no better than chance. We evaluated the judgments of 450 participants who completed an AGL task. For each trial, participants decided whether a stimulus conformed to a given set of rules and rated their confidence in that judgment. We identified participants who performed at chance on the discrimination task, utilizing a subset of their responses, and then assessed the accuracy and the confidence-accuracy relationship of their remaining responses. Analyses revealed above-chance metacognition among participants who did not exhibit decision accuracy. This important new phenomenon, which we term blind insight, poses critical challenges to prevailing models of metacognition grounded in signal detection theory

    High-Speed, Three-Dimensional Quantification of Ladybug Flapping Wing Kinematics During Takeoff

    Get PDF
    Ladybug wing and body kinematics during takeoff is explored using high-speed stereoscopic images acquired at a rate of 3000 frames per second. A direct linear transformation algorithm is used to quantify positions of selected locations on the body, forewings (elytra), and hindwings. Design and setup of instrumentation and analysis procedures are explained. Flapping frequency is reported. Significant motion of the forewing and other findings are presented and their applications are discussed

    Tailored magnetoelastic sensor geometry for advanced functionality in wireless biliary stent monitoring systems

    Full text link
    This paper presents three types of wireless magnetoelastic resonant sensors with specific functionalities for monitoring sludge accumulation within biliary stents. The first design uses a geometry with a repeated cell shape that provides two well-separated resonant mode shapes and associated frequencies to permit spatial localization of mass loading. The second design implements a pattern with specific variation in feature densities to improve sensitivity to mass loading. The third design uses narrow ribbons joined by flexible couplers; this design adopts the advantages in flexibility and expandability of the other designs while maintaining the robust longitudinal mode shapes of a ribbon-shaped sensor. The sensors are batch patterned using photochemical machining from 25 µm thick 2605SA1 Metglas™, an amorphous Fe–Si alloy. Accumulation of biliary sludge is simulated with paraffin or gelatin, and the effects of viscous bile are simulated with a range of silicone fluids. Results from the first design show that the location of mass loads can be resolved within ~5 mm along the length of the sensor. The second design offers twice the sensitivity to mass loads (3000–36 000 ppm mg−1) of other designs. The third design provides a wide range of loading (sensitive to at least 10× the mass of the sensor) and survives compression into a 2 mm diameter tube as would be required for catheter-based delivery.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85405/1/jmm10_7_075040.pd

    Design of a Flapping Wing Mechanism for Force Analysis and Optimization

    Get PDF
    The design of a robotic flapping wing mechanism is discussed. The design allows for dynamic adjustment of flapping trajectory in fluid with three rotational degrees of freedom, while keeping all motors and encoders out of the fluid (i.e., water or oil) to protect critical equipment from potential failure and increase reliability. Mechanism control is discussed. Preliminary optimization using a Box-Behnkin design approach is used and shows successful parameter optimization. Mechanism limitations are addressed

    Exploring a search for long-duration transient gravitational waves associated with magnetar bursts

    Full text link
    Soft gamma repeaters and anomalous X-ray pulsars are thought to be magnetars, neutron stars with strong magnetic fields of order ∼1013\mathord{\sim} 10^{13}--1015 gauss10^{15} \, \mathrm{gauss}. These objects emit intermittent bursts of hard X-rays and soft gamma rays. Quasiperiodic oscillations in the X-ray tails of giant flares imply the existence of neutron star oscillation modes which could emit gravitational waves powered by the magnetar's magnetic energy reservoir. We describe a method to search for transient gravitational-wave signals associated with magnetar bursts with durations of 10s to 1000s of seconds. The sensitivity of this method is estimated by adding simulated waveforms to data from the sixth science run of Laser Interferometer Gravitational-wave Observatory (LIGO). We find a search sensitivity in terms of the root sum square strain amplitude of hrss=1.3×10−21 Hz−1/2h_{\mathrm{rss}} = 1.3 \times 10^{-21} \, \mathrm{Hz}^{-1/2} for a half sine-Gaussian waveform with a central frequency f0=150 Hzf_0 = 150 \, \mathrm{Hz} and a characteristic time τ=400 s\tau = 400 \, \mathrm{s}. This corresponds to a gravitational wave energy of EGW=4.3×1046 ergE_{\mathrm{GW}} = 4.3 \times 10^{46} \, \mathrm{erg}, the same order of magnitude as the 2004 giant flare which had an estimated electromagnetic energy of EEM=∼1.7×1046(d/8.7 kpc)2 ergE_{\mathrm{EM}} = \mathord{\sim} 1.7 \times 10^{46} (d/ 8.7 \, \mathrm{kpc})^2 \, \mathrm{erg}, where dd is the distance to SGR 1806-20. We present an extrapolation of these results to Advanced LIGO, estimating a sensitivity to a gravitational wave energy of EGW=3.2×1043 ergE_{\mathrm{GW}} = 3.2 \times 10^{43} \, \mathrm{erg} for a magnetar at a distance of 1.6 kpc1.6 \, \mathrm{kpc}. These results suggest this search method can probe significantly below the energy budgets for magnetar burst emission mechanisms such as crust cracking and hydrodynamic deformation
    • …
    corecore